From ad8ba2db29c0f3abecb292b1059dad554bf7f3b5 Mon Sep 17 00:00:00 2001 From: axtloss Date: Tue, 28 May 2024 14:30:34 +0200 Subject: add geoclue and glib date --- src/sun.c | 133 ++++++++++---------------------------------------------------- 1 file changed, 21 insertions(+), 112 deletions(-) (limited to 'src/sun.c') diff --git a/src/sun.c b/src/sun.c index f08dfd8..8d5a7e6 100644 --- a/src/sun.c +++ b/src/sun.c @@ -1,148 +1,59 @@ #include #include -#define PI 3.1415926 +#include "sun.h" #define ZENITH -.83 -float calculateSunrise(int year,int month,int day,float lat, float lng,int localOffset) { - /* - localOffset will be <0 for western hemisphere and >0 for eastern hemisphere - daylightSavings should be 1 if it is in effect during the summer otherwise it should be 0 - */ - //1. first calculate the day of the year - float N1 = floor(275 * month / 9); - float N2 = floor((month + 9) / 12); - float N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3)); - float N = N1 - (N2 * N3) + day - 30; - - //2. convert the longitude to hour value and calculate an approximate time - float lngHour = lng / 15.0; - float t = N + ((6 - lngHour) / 24); - - //3. calculate the Sun's mean anomaly - float M = (0.9856 * t) - 3.289; - - //4. calculate the Sun's true longitude - float L = fmod(M + (1.916 * sin((PI/180)*M)) + (0.020 * sin(2 *(PI/180) * M)) + 282.634,360.0); - - if ( L < 0 ) - L = L+360; - else if ( L > 360) - L = L-360; - - //5a. calculate the Sun's right ascension - float RA = fmod(180/PI*atan(0.91764 * tan((PI/180)*L)),360.0); - - if ( RA < 0 ) - RA = RA+360; - else if ( RA > 360) - RA = RA-360; - - //5b. right ascension value needs to be in the same quadrant as L - float Lquadrant = floor( L/90) * 90; - float RAquadrant = floor(RA/90) * 90; - RA = RA + (Lquadrant - RAquadrant); - - //5c. right ascension value needs to be converted into hours - RA = RA / 15; - - //6. calculate the Sun's declination - float sinDec = 0.39782 * sin((PI/180)*L); - float cosDec = cos(asin(sinDec)); - - //7a. calculate the Sun's local hour angle - float cosH = (sin((PI/180)*ZENITH) - (sinDec * sin((PI/180)*lat))) / (cosDec * cos((PI/180)*lat)); - - if (cosH > 1) - g_print("Never rising\n"); - else if (cosH < -1) - g_print("Never setting\n"); - - //7b. finish calculating H and convert into hours - float H = 360 - (180/PI)*acos(cosH); // if if rising time is desired: - - H = H / 15; - - //8. calculate local mean time of rising/setting - float T = H + RA - (0.06571 * t) - 6.622; - - //9. adjust back to UTC - float UT = fmod(T - lngHour,24.0); +float to_rad (float n) { + return (M_PI/180) * n; +} - if ( UT < 0 ) - UT = UT+24; - else if (UT > 24) - UT = UT-24; +float to_deg (float n) { + return (180/M_PI) * n; +} - //10. convert UT value to local time zone of latitude/longitude - return UT + localOffset; +// http://edwilliams.org/sunrise_sunset_algorithm.htm +// if the sunset is desired, set sunset to >= 1 +// returns -1 if the sun never rises/sets in the specified location +float calculateSun(int year, int month, int day, float lat, float lng, int localOffset, int sunset) { - } + if (sunset > 1) + sunset = 1; -float calculateSunset(int year,int month,int day,float lat, float lng,int localOffset) { - /* - localOffset will be <0 for western hemisphere and >0 for eastern hemisphere - daylightSavings should be 1 if it is in effect during the summer otherwise it should be 0 - */ - //1. first calculate the day of the year float N1 = floor(275 * month / 9); float N2 = floor((month + 9) / 12); float N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3)); float N = N1 - (N2 * N3) + day - 30; - //2. convert the longitude to hour value and calculate an approximate time float lngHour = lng / 15.0; - float t = N + ((18 - lngHour) / 24); //if setting time is desired: + float t = N + ((sunset == 0 ? 6 : 18 - lngHour) / 24); - //3. calculate the Sun's mean anomaly float M = (0.9856 * t) - 3.289; - //4. calculate the Sun's true longitude - float L = fmod(M + (1.916 * sin((PI/180)*M)) + (0.020 * sin(2 *(PI/180) * M)) + 282.634,360.0); - - if ( L < 0 ) - L = L+360; - else if ( L > 360) - L = L-360; + float L = fmod(M + (1.916 * sin(to_rad(M))) + (0.020 * sin(2 *to_rad(M))) + 282.634,360.0); - //5a. calculate the Sun's right ascension - float RA = fmod(180/PI*atan(0.91764 * tan((PI/180)*L)),360.0); + float RA = fmod(to_deg(atan(0.91764 * tan(to_rad(L)))),360.0); - if ( RA < 0 ) - RA = RA+360; - else if ( RA > 360) - RA = RA-360; - - //5b. right ascension value needs to be in the same quadrant as L float Lquadrant = floor( L/90) * 90; float RAquadrant = floor(RA/90) * 90; RA = RA + (Lquadrant - RAquadrant); - - //5c. right ascension value needs to be converted into hours RA = RA / 15; - //6. calculate the Sun's declination - float sinDec = 0.39782 * sin((PI/180)*L); + float sinDec = 0.39782 * sin(to_rad(L)); float cosDec = cos(asin(sinDec)); - //7a. calculate the Sun's local hour angle - float cosH = (sin((PI/180)*ZENITH) - (sinDec * sin((PI/180)*lat))) / (cosDec * cos((PI/180)*lat)); + float cosH = (sin(to_rad(ZENITH)) - (sinDec * sin(to_rad(lat)))) / (cosDec * cos(to_rad(lat))); if (cosH > 1) - g_print("Never rising\n"); + return -1; else if (cosH < -1) - g_print("Never setting\n"); - + return -1; - //7b. finish calculating H and convert into hours - - float H = (180/PI)*acos(cosH); // if setting time is desired: + float H = sunset == 0 ? (360 - to_deg(acos(cosH))) : to_deg(acos(cosH)); H = H / 15; - //8. calculate local mean time of rising/setting float T = H + RA - (0.06571 * t) - 6.622; - //9. adjust back to UTC float UT = fmod(T - lngHour,24.0); if ( UT < 0 ) @@ -150,7 +61,5 @@ float calculateSunset(int year,int month,int day,float lat, float lng,int localO else if (UT > 24) UT = UT-24; - //10. convert UT value to local time zone of latitude/longitude return UT + localOffset; - } -- cgit v1.2.3