aboutsummaryrefslogtreecommitdiff
path: root/src/sun.c
blob: f08dfd82700d5de7405bb5f19ca3b07025b13df9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#include <math.h>
#include <glib.h>
#define PI 3.1415926
#define ZENITH -.83

float calculateSunrise(int year,int month,int day,float lat, float lng,int localOffset) {
    /*
    localOffset will be <0 for western hemisphere and >0 for eastern hemisphere
    daylightSavings should be 1 if it is in effect during the summer otherwise it should be 0
    */
    //1. first calculate the day of the year
    float N1 = floor(275 * month / 9);
    float N2 = floor((month + 9) / 12);
    float N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3));
    float N = N1 - (N2 * N3) + day - 30;

    //2. convert the longitude to hour value and calculate an approximate time
    float lngHour = lng / 15.0;
    float t = N + ((6 - lngHour) / 24);

    //3. calculate the Sun's mean anomaly
    float M = (0.9856 * t) - 3.289;

    //4. calculate the Sun's true longitude
    float L = fmod(M + (1.916 * sin((PI/180)*M)) + (0.020 * sin(2 *(PI/180) * M)) + 282.634,360.0);

    if ( L < 0 )
      L = L+360;
    else if ( L > 360)
      L = L-360;

    //5a. calculate the Sun's right ascension
    float RA = fmod(180/PI*atan(0.91764 * tan((PI/180)*L)),360.0);

    if ( RA < 0 )
      RA = RA+360;
    else if ( RA > 360)
      RA = RA-360;

    //5b. right ascension value needs to be in the same quadrant as L
    float Lquadrant  = floor( L/90) * 90;
    float RAquadrant = floor(RA/90) * 90;
    RA = RA + (Lquadrant - RAquadrant);

    //5c. right ascension value needs to be converted into hours
    RA = RA / 15;

    //6. calculate the Sun's declination
    float sinDec = 0.39782 * sin((PI/180)*L);
    float cosDec = cos(asin(sinDec));

    //7a. calculate the Sun's local hour angle
    float cosH = (sin((PI/180)*ZENITH) - (sinDec * sin((PI/180)*lat))) / (cosDec * cos((PI/180)*lat));

    if (cosH >  1)
      g_print("Never rising\n");
    else if (cosH < -1)
      g_print("Never setting\n");

    //7b. finish calculating H and convert into hours
    float H = 360 - (180/PI)*acos(cosH);   //   if if rising time is desired:

    H = H / 15;

    //8. calculate local mean time of rising/setting
    float T = H + RA - (0.06571 * t) - 6.622;

    //9. adjust back to UTC
    float UT = fmod(T - lngHour,24.0);

    if ( UT < 0 )
      UT = UT+24;
    else if (UT > 24)
      UT = UT-24;

    //10. convert UT value to local time zone of latitude/longitude
    return UT + localOffset;

    }

float calculateSunset(int year,int month,int day,float lat, float lng,int localOffset) {
   /*
    localOffset will be <0 for western hemisphere and >0 for eastern hemisphere
    daylightSavings should be 1 if it is in effect during the summer otherwise it should be 0
    */
    //1. first calculate the day of the year
    float N1 = floor(275 * month / 9);
    float N2 = floor((month + 9) / 12);
    float N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3));
    float N = N1 - (N2 * N3) + day - 30;

    //2. convert the longitude to hour value and calculate an approximate time
    float lngHour = lng / 15.0;

    float t = N + ((18 - lngHour) / 24);   //if setting time is desired:

    //3. calculate the Sun's mean anomaly
    float M = (0.9856 * t) - 3.289;

    //4. calculate the Sun's true longitude
    float L = fmod(M + (1.916 * sin((PI/180)*M)) + (0.020 * sin(2 *(PI/180) * M)) + 282.634,360.0);

    if ( L < 0 )
      L = L+360;
    else if ( L > 360)
      L = L-360;

    //5a. calculate the Sun's right ascension
    float RA = fmod(180/PI*atan(0.91764 * tan((PI/180)*L)),360.0);

    if ( RA < 0 )
      RA = RA+360;
    else if ( RA > 360)
      RA = RA-360;

    //5b. right ascension value needs to be in the same quadrant as L
    float Lquadrant  = floor( L/90) * 90;
    float RAquadrant = floor(RA/90) * 90;
    RA = RA + (Lquadrant - RAquadrant);

    //5c. right ascension value needs to be converted into hours
    RA = RA / 15;

    //6. calculate the Sun's declination
    float sinDec = 0.39782 * sin((PI/180)*L);
    float cosDec = cos(asin(sinDec));

    //7a. calculate the Sun's local hour angle
    float cosH = (sin((PI/180)*ZENITH) - (sinDec * sin((PI/180)*lat))) / (cosDec * cos((PI/180)*lat));

    if (cosH >  1)
      g_print("Never rising\n");
    else if (cosH < -1)
      g_print("Never setting\n");


    //7b. finish calculating H and convert into hours

    float H = (180/PI)*acos(cosH); //   if setting time is desired:
    H = H / 15;

    //8. calculate local mean time of rising/setting
    float T = H + RA - (0.06571 * t) - 6.622;

    //9. adjust back to UTC
    float UT = fmod(T - lngHour,24.0);

    if ( UT < 0 )
      UT = UT+24;
    else if (UT > 24)
      UT = UT-24;

    //10. convert UT value to local time zone of latitude/longitude
    return UT + localOffset;

}